Implicit Syntactic Features for Targeted Sentiment Analysis

نویسندگان

  • Yuze Gao
  • Yue Zhang
  • Tong Xiao
چکیده

Target-dependent sentiment analysis investigates the sentiment polarities on given target mentions from input texts. Different from sentence-level sentiment, it offers more fine-grained knowledge on each entity mention. While early work leveraged syntactic information, recent research has used neural representation learning to induce features automatically, thereby avoiding error propagation of syntactic parsers, which are particularly severe on social media texts. We study a method to leverage syntactic information without explicitly building parser outputs, by training an encoderdecoder structure parser model on standard syntactic treebanks, and then leveraging its hidden encoder layers when analysing tweets. Such hidden vectors do not contain explicit syntactic outputs, yet encode rich syntactic features. We use them to augment the inputs to a baseline state-of-the-art target-dependent sentiment classifier, observing significant improvements on various benchmark datasets. We obtain the best accuracies on two different test sets for targeted sentiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More than Words: Syntactic Packaging and Implicit Sentiment

Work on sentiment analysis often focuses on the words and phrases that people use in overtly opinionated text. In this paper, we introduce a new approach to the problem that focuses not on lexical indicators, but on the syntactic “packaging” of ideas, which is well suited to investigating the identification of implicit sentiment, or perspective. We establish a strong predictive connection betwe...

متن کامل

A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis

Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...

متن کامل

Gated Neural Networks for Targeted Sentiment Analysis

Targeted sentiment analysis classifies the sentiment polarity towards each target entity mention in given text documents. Seminal methods extract manual discrete features from automatic syntactic parse trees in order to capture semantic information of the enclosing sentence with respect to a target entity mention. Recently, it has been shown that competitive accuracies can be achieved without u...

متن کامل

Title of Document : SPIN : LEXICAL SEMANTICS , TRANSITIVITY , AND THE IDENTIFICATION OF IMPLICIT SENTIMENT

Title of Document: SPIN: LEXICAL SEMANTICS, TRANSITIVITY, AND THE IDENTIFICATION OF IMPLICIT SENTIMENT Stephan Charles Greene Doctor of Philosophy, 2007 Directed By: Professor Philip Resnik, Department of Linguistics and Institute for Advanced Computer Studies Current interest in automatic sentiment analysis is motivated by a variety of information requirements. The vast majority of work in sen...

متن کامل

MayAnd at SemEval-2016 Task 5: Syntactic and word2vec-based approach to aspect-based polarity detection in Russian

This paper describes aspect-based polarity detection system for Russian, used in aspectbased sentiment analysis task (ABSA) of SemEval-2016 (Task 5, subtask 1, slot 3). The system consists of two independent classifiers: for opinion target expressions and for implicit opinion target mentions. We introduce a set of standard unigram features together with more sophisticated ones: based on sentenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017